Kernel code/ru
Ветка trunk ядра KolibriOS. Путеводитель-справочник по исходному коду.
Директория /
Файл init.inc
Содержит функции, необходимые для инициализации системы.
mem_test
- Проводит тестирование памяти.
Если bios имеет функцию 0xE820, то тестирование не производится и происходит выход из функции.
init_mem
- Инициализация системной таблицы страниц
init_page_map
- TODO
init_BIOS32
- TODO
test_cpu
- Получение информации о процессоре.
acpi_locate
- Поиск поиск структуры RSDP (Root System Description Pointer) которая используется в ACPI.
- Функция возвращает указатель на RSDP в регистре eax.
rsdt_find
- В ecx принимает адрес RSDT, в edx сигнатуру таблицы, которую нужно найти (например ACPI_FADT_SIGN)
- В eax возвращает адрес требуемой таблицы
check_acpi
- TODO
init_hpet
- Инициализация HPET (High Perfomance Event Timer)
Файл kernel32.inc
- Этот файл не содержит реализаций и является по сути заголовочным
- Здесь содержатся инклуды .inc файлов почти всех подсистем ядра
Файл proc32.inc
- Содержит макросы для определения и вызова процедур:
stdcall proc
- Directly call STDCALL procedure
invoke proc
- Indirectly call STDCALL procedure
ccall proc
- Directly call CDECL procedure
invoke proc
- Indirectly call CDECL procedure
proc
- ...
Файл macros.inc
- Содержит разные полезные макросы, в том числе для работы со связными списками
$Revision
- Клиент svn при работе с репозиторием после ключевого слова $Revision: подставляет текущую ревизию файла.
В macros.inc из исходников ядра, подключающемся первым, определён макрос fasm'а $Revision, который вычисляет максимум из всех мест, где он встретился (то есть во всех файлах, прямо или косвенно подключаемым к kernel.asm), каковой максимум и является номером самой свежей ревизии ядра (не драйверов).
В конце kernel.asm он присваивается переменной __REV__, ну а boot/bootstr.inc включает значение __REV__ в начальную выводимую строку.
diff16
- Макрос, который вычисляет разность между вторым и первым аргументом и выводит ее на консоль в 16ичной системе счисления во время ассемблирования fasm'ом
- Первый аргумент - строка с сообщением
- Пример:
- diff16 "cur_saved_data (data32.inc) ", 0, $
- cur_saved_data rb 4096
- Во время ассемблирования данного участка кода, fasm выведет "cur_saved_data (data32.inc) 0xЧИСЛО", где 0xЧИСЛО будет адресом cur_saved_data
diff10
- Аналог diff16, только в 10ичной системе.
dbgstr
- Вывод строки на доску отладки.
Макросы для работы со связными списками:
list_init_head
- Создание списка
__list_add
- Добавление в список (внутреннее использование)
list_add
- Вставка в начало списка
list_add_tail
- Вставка в конец списка
list_del
- Удаление из списка
Файл struct.inc
- Содержит макросы для объявления структур и работы с ними
struct
- Макрос для объявления структур
Файл fdo.inc
- Formatted Debug Output (FDO)
- Это набор макросов для повышения удобства отладки приложений.
- Работает подобно функции printf(), выводя на доску отладки форматированные сообщения.
- Доступные спецификаторы формата %s, %d, %u, %x (с частичной поддержкой ширины).
- Использовать обычно нужно только DEBUGF, хотя доступны также и DEBUGS, DEBUGD, DEBUGH.
- Примеры:
- DEBUGF 1, "%s - %d (%x)", eax, 123, ch
- DEBUGF 1, "%d.%d.%d.%d", [ip+0]:1, [ip+1]:1, [ip+2]:1, [ip+3]:1
- DEBUGF 1, <"function ", __FNAME__, ": %s - %x - %u">, "text here", [var]:5, [esp+16]
- DEBUGF 1, "[%d][%d][%d][%d][%d]\n", al, ax, ebx, [eax], [eax]:1
- DEBUGF 2, "[%u][%u][%u][%u][%u]\n", al, ax, ebx, [eax], [eax]:1
- DEBUGF 3, "[%x][%x][%x][%x][%x]\n", al, ax, ebx, [eax], [eax]:1
- DEBUGF 4, "[%s][%s][%s][%s][%s][%s][%s]\n", "string":4, eax, eax:5, [ebx]:5, eax:ecx, eax:[ecx], eax:byte[ecx]
- Ширина:
- for %s - any number, register, or in-memory variable
- for %d - 1, 2, 4 (only for in-memory arguments)
- for %u - 1, 2, 4 (only for in-memory arguments)
- for %x - 1 .. 8
Файл const.inc
- Содержит константы и объявления структур.
- Распространенные сокращения:
- bk - от "back", fd - от "forward". Часто в структурах поля bk и fd означают указатель на предыдущий и следующий элемент соотв-но.
- также fd может означать "file descriptor"
....
APPOBJ
- Структура заголовка объекта, принадлежащего приложению. Используется как составная часть некоторых других структур.
- Для создания и уничтожения объектов используются следующие функции:
- - create_kernel_object/destroy_kernel_object (создание/удаления объектов ядра)
- - create_object/destroy_object (создание/удаление объектов текущего приложения (current_process))
CURSOR
- Структура курсора
- TODO
EVENT
- Структура события
SMEM
- TODO
SMAP
- TODO
DLLDESCR
- TODO
HDLL
- TODO
DQ
- Структура, просто с двумя dd, т.е для хранения восьмибайтовых значений.
e820entry
- Структура элемента карты оперативной памяти, получаемой с помощью интерфейса e820.
....
boot_data
- Структура, содержащая данные, полученные при загрузке системы, различная информация о железе, биосе и т.д
display_t
- Структура дл яхранения информации о дисплее.
DISPMODE
- Структура, хранящая информацию о режиме дисплея: ширина, высота, кол-во байт на пиксель, частота.
PCIDEV
- Структура для хранения информации об устройстве на PCI-шине.
....
Файл data32.inc
- Содержит в основном строковые константы на различных языках (русский, английский и т.д).
- Также в здесь объявлены некотрые переменные и настройки ядра
- Включает в себя файлы data32sp.inc (испанский) и data32et.inc (эстонский)
keymap
- Содежит раскладку клавиатуры (128 байт)
keymap_shift
- Раскладка клавиатуры при зажатой Shift
keymap_alt
- Раскладка клавиатуры при зажатой Alt
... - далее идут объявления констант с именами boot_*
- Это те самые сообщения, которые пишутся белым шрифтом на черном фоне при загрузке KolibriOS
... - далее идут константы, содержащие пути к драйверам, некоторым файлам
shmem_list
- TODO
dll_list
- TODO
pcidev_list
- TODO
...
syslang
- Хранит номер языка системы (1 - en, 4 - ru и тд)
gdts
Судя из названия метки: gdts = GDT Start
GDT это Global Descriptor Table, глобальная таблица дескрипторов, в которой описываются сегменты памяти
Далее описаны элементы этой таблицы то есть сегменты:
os_code_l, int_data_l и os_data_l, app_code_l, app_data_l, pci_code_32, pci_data_32, apm_code_32, apm_code_16, apm_data_16, graph_data_l, tss0_1, tls_data_l
gdte
- После описания всех сегментов стоит это метка.
- Судя из названия: gdte = GDT End
...
pg_data
- TODO
...
sys_pgmap
- Таблица физических страниц.
- Представляет собой массив битов, который для каждой физической страницы описывает, выделена она или свободна.
...
Файл kglobals.inc
- Содержит макросы для объявления глобальных данных (макросы iglobal ... endg и uglobal ... endg)
- Рассмотрим файл kglobals.inc. На первый взгляд вовсе не очевидно, что же делают определенные в нем макросы iglobal и uglobal. Их используют при объявления данных в некоторых участках кода ядра. Но зачем же они нужны? Задача этих макросов собрать данные, объявленные с помощью них, в конец компилируемого файла, чтобы добиться уменьшения размера файла (за счет отсутствия лишних выравниваний на границу align 4) и возможно лучшего сжатия, процедурой упаковки ядра. Данные, обозначенные макросом iglobal являются инициализированными и уже заранее содержат нужное значение. Также есть макрос uglobal, который также собирает данные в конец файла, но помещает их за пределами получаемого бинарника - это не инициализированные данные и содержимое их не гарантируется, хотя обычно содержит ноль. Цель макросов iglobal и uglobal — не столько уменьшение размера файла, хотя и это тоже присутствует, сколько ускорение, процессору существенно лучше, когда код и данные разделены. Данные, размещённые в uglobal, сами по себе действительно неинициализированы, но конкретно в случае ядра Колибри при загрузке выполняется код, который область uglobal явным образом обнуляет.
iglobal
- use "iglobal" for inserting initialized global data definitions.
uglobal
- use 'uglobal' for inserting uninitialized global definitions.
- (even when you define some data values, these variables will be stored as uninitialized data)
Файл encoding.inc
- Содержит макросы для конвертирования и объявления кодировок
Файл unpacker.inc
- Это lzma-распаковщик, содержит одну единственную функцию void unpack(void* packed_data, void* unpacked_data);
- dword[packed_data + 0] -> символы 'KPCK'
- dword[packed_data + 4] -> размер unpacked_data
- TODO: т.е как эта функция определяет длину packed_data?
Директория detect/
Файл biosdisk.inc
- Получение информации о жестких дисках с помощью функций bios
Файл biosmem.inc
- Получение memory map с помощую функции bios'а
- memory map это структура, описывающая физическую оперативную память компьютера
Файл dev_fd.inc
- Поиск и занесение в таблицу приводов FDD (Floppy Disk Drive т.е привод гибких дисков т.е дискет)
Файл disks.inc
- В этом заголовочном файле просто 4 инклюда:
- include 'dev_fd.inc'
- include 'dev_hdcd.inc'
- include 'getcache.inc'
- include 'sear_par.inc'
Файл init_ata.inc
- Инициализация ATA интерфейса, поиск, инициализация и настройка IDE контроллеров
- Сначала идет код поиска IDE контроллера в списке pci устройств и определение его BAR регистров
set_pci_command_bus_master
- Установить bus master бит в командный pci регистр
Init_IDE_ATA_controller
- Инициализация ide контроллера
Init_IDE_ATA_controller_2
- ...
Файл dev_hdcd.inc
- Поиск hdd и cd дисков, чтение информации о них, функции посылки команд на них
FindHDD
- TODO
FindHDD_2
- TODO
FindHDD_1
- TODO
сalculate_IDE_device_values_storage
- TODO
convert_Sector512_value
- TODO
ReadHDD_ID
- Чтение идентификатора жесткого диска
- Входные параметры передаются через глобальные переменные:
- ChannelNumber - номер канала (1 или 2);
- DiskNumber - номер диска на канале (0 или 1).
- Идентификационный блок данных считывается в массив Sector512.
find_IDE_controller_done
- Инициализирует до трех ide контроллеров
- Настраивает ide кэш
- Ищет разделы на диске
- ...
- Если включен extended_primary_loader, то выполняется код из boot/rdload.inc
Файл getcache.inc
- Настройка IDE кэша
Файл sear_par.inc
- Поиск разделов на дисках
Файл rdload.inc
- Загрузчик ram диска
Файл vortex86.inc
- Обнаружение и получение информации о SoC Vortex86 для компьютеров на базе нее
Директория core/
Файл syscall.inc
- Содержит таблицу системных вызовов и функции для осуществления системных вызовов различными способами.
- TODO: чем отличаются следующие три функции? когда какая применяется?
sysenter_entry
- TODO
i40
- TODO
syscall_entry
- TODO
servetable2
- Это таблица системных вызовов.
- Хранит адреса функций-обработчиков системных вызовов, начиная с 0ой и заканчивая 80ой.
Файл apic.inc
- Реализована работа с APIC (Advanced Programmable Interrupt Controller) и PIC
- APIC состоит из двух модулей - LAPIC (свой для каждого ядра процессора) и IOAPIC (контроллер на системной плате).
- В начале объявлены глобальные перменные и константы.
- Например переменная irq_mode обозначет текущий режим прерываний. Она принимает значение IRQ_PIC и IRQ_APIC
- TODO: описать предназначение каждой перменной и константы
APIC_init
- эта функция отвечает за APIC.
- она инициализирует конроллер IOAPIC и вызывает функцию LAPIC_init
LAPIC_init
- инициализация LAPIC
IOAPIC_read
- чтение регистра из контроллера IOAPIC.
- номер регистра передается в EAX, значение возвращеется в EAX
IOAPIC_write
- запись значения в регистр контроллера IOAPIC
- номер регистра передается в EAX, значение передается в EBX, функция ничего не возвращает
PIC_init
- инициализация PIC (Programmable Interrupt Controller, программируетмый контроллер прерываний)
- она выполняет Remap all IRQ to 0x20+ Vectors, IRQ0 to vector 0x20, IRQ1 to vector 0x21...
PIT_init
- инициализирует PIT (Programmable Interval Timer, программируемый интервальный таймер)
- устанавливает интервал срабатывания 1/100 секунды
unmask_timer
- TODO
IRQ_mask_all
- отключить все irq
irq_eoi
- послать сигнал EOI (End Of Interrupt, конец прерывания).
- В cl передается номер irq
proc enable_irq stdcall, irq_line:dword
proc disable_irq stdcall, irq_line:dword
pci_irq_fixup
get_clock_ns
acpi_get_root_ptr
- возращает в eax Root System Description Pointer (есть такая структура данных в ACPI)
Файл debug.inc
- Содержит реализазию системной функции 69 - отладка. (см. http://wiki.kolibrios.org/wiki/SysFn69/)
Файл clipboard.inc
- Содержит реализацию системной функции54 - работа с буфером обмена. (см. http://wiki.kolibrios.org/wiki/SysFn54/)
Файл string.inc
- Реализует следующие функции для работы со строками:
- size_t strncat(char *s1, const char *s2, size_t n); // Append string s2 to s1.
- char *strchr(const char *s, int c); //
- int strncmp(const char *s1, const char *s2, size_t n); //
- char *strncpy(char *s1, const char *s2, size_t n); // Copy string s2 to s1.
- proc strrchr stdcall, s:dword, c:dword; Look for the last occurrence a character in a string.
Файл conf_lib.inc
- Загружает настройки ядра из файла /sys/sys.conf
- для чтения ini использует функции libini.obj (?)
proc set_kernel_conf
- Читает из sys.conf параметры mouse_speed, mouse_delay, midibase и применяет их
proc strtoint
- конвертация строки в dword, сама оределяет hex или dec, по наличию или отсутствию 0x, 0X
proc strtoint_dec
proc strtoint_hex
proc do_inet_adr stdcall,strs
- ковертировать строковую запись ip адреса в dword
Файл memory.inc
alloc_page (proc alloc_page)
- функция выделения одной физической страницы.
- функция ищет первую свободную физическую страницу в таблице физических страниц (sys_pgmap ?).
- Найдя страницу, page_start устанавливается на следующую страницу после найденной.
- но есть при следующем выове свободные страницы бцдцт искаться начиная с нее.
- Система хранит массив битов, который для каждой физической страницы описывает, выделена она или свободна,
- а также вспомогательные переменные:
- подсказку [page_start] - нижнюю границу при поиске свободной страницы (указатель внутри битового массива, относительно которого известно, что все предшествующие данные забиты единицами, а соответствующие страницы выделены),
- указатель [page_end] на конец массива, число свободных страниц [pg_data.pages_free].
- in: ничего
- out: eax = физ. адрес выделенной физической страницы, или eax = 0 если свободной страницы не нашлось.
alloc_pages (proc alloc_pages stdcall, count:dword)
- функция выделения нескольких физических страниц, выделяющая связный диапазон, причём кратный 8 страницам
- in: требуемое количество страниц
- out: eax = начальный физ. адрес выделенного диапазона страниц, или eax = 0 если не удалось выделить.
map_page (proc map_page stdcall,lin_addr:dword,phis_addr:dword,flags:dword)
- функция отображения указанной физической страницы по указанному линейному адресу
- (стандартное добавление элемента в таблицу страниц; работает и с user-mode пространством).
- способная также размаппить страницу (нулевой элемент таблицы страниц соответствует свободной линейной странице).
- in:
- lin_addr - по какому линейному адресу отобразить страницу
- phis_addr - физ. адрес отображаемой страницы
- flags - какие флаги поставить на страницу (констанды этих слагов есть в data32.inc, например PG_SWR и тд)
- out: ничего
map_space
- объявлена, но не реализована, предназначение неясно.
free_page (proc free_page)
- функция освобождения ранее выделенной физической страницы
- in: eax = физ. адрес страницы
- out: ничего
map_io_mem (proc map_io_mem stdcall, base:dword, size:dword, flags:dword)
- функция, создающая отображение заданного блока физических страниц в адресном пространстве ядра
- Как работает: вызывает alloc_kernel_space (см. core/heap.inc), а потом добавляет в таблицу страниц преобразование указанных физических адресов на только что выделенные линейные.
- in:
- base = начало блока
- size = размер блока
- flags = какие флаги поставить на виртуальные страницы
- out:
- eax = линейный адрес начала блока страниц
commit_pages
- аналогичная map_page функция, только для блока непрерывных физических адресов.
- отображает непрерывный блок физических адресов по указанному линейному адресу
- in:
- eax = page base + page flags
- ebx = linear address
- ecx = count
- out: ничего
release_pages
- функция, которая принимает линейный адрес и размер блока и одновременно размаппит из линейных адресов и освобождает физические страницы из этого блока.
- in:
- eax = base
- ecx = count
- out: ничего
unmap_pages
- функция, обратная commit_pages. Размаппит страницы принадлежащие указанному непрерывному блоку линейных адресов.
map_page_table
- TODO
alloc_dma24
- TODO
create_trampoline_pgmap
- TODO
new_mem_resize
- TODO
get_pg_addr
- функция получения физического адреса по указанному линейному
page_fault_handler
- TODO:
map_mem_ipc
- TODO
map_memEx
- TODO
safe_map_page
- TODO
sys_IPC
- реализация системной функции 60
sys_ipc_send
- реализация подфункции 2 сисфункции 60
sysfn_meminfo
- реализация подфункции 20 системной функции 18.
- кстати, таблица подфункций сисфункции 18 находится в kernel.asm, это метка sys_system_table
- обработчик сисфункции 18 sys_system
f68
- реализует подфункции 11-29 системной функции 68
f68call
- это таблица подфункций 11-29 системной функции 68
load_pe_driver
- эту функцию использует реализация подфункции 21 системной функции 68
create_ring_buffer
- TODO
print_mem
- TODO
Файл heap.inc
- в начале объявляется структура MEM_BLOCK и константы MEM_BLOCK_RESERVED, MEM_BLOCK_FREE, MEM_BLOCK_USED, MEM_BLOCK_DONT_FREE
- также объявляется calc_index.
md
- TODO
init_kernel_heap
- инициализация кучи ядра.
get_small_block
- найти первый блок >= требуемого размера.
- аргументы eax = требуемый размер
- возвращаемое значение: edi = указатель на блок; ebx= индекс блока
free_mem_block
- TODO
alloc_kernel_space
- выделяет непрерывный диапазон в адресном пространстве ядра
free_kernel_space
- освобождает непрерывный диапазон в адресном пространстве ядра
kernel_alloc
- TODO
kernel_free
- TODO
Далее функции пользовательской кучи
init_heap
- TODO
user_alloc
- TODO
user_alloc_at
- TODO
user_free
- TODO
user_unmap
- TODO
user_normalize
- TODO
user_realloc
- TODO
Далее функции shared memory
destroy_smap
- TODO
shmem_open
- TODO
shmem_close
- TODO
Далее функции user land ring buffers
user_ring
- TODO
Файл sys32.inc
- Функции управления задачами
build_interrupt_table
- TODO
page_fault_exc
- TODO
show_error_parameters
- TODO
lock_application_table
- TODO
unlock_application_table
- TODO
sys_resize_app_memory
- Реализация единственной подфункции 1 системной функции 64
terminate
- Завершение процесса, когда системный поток получает управление (главный цикл системы), одним из его действий является проход по списку процессов, поиск потоков в завершающемся состоянии и убийство таких процессов. Все нижеследующие действия происходят в контексте системного потока.
- Захватывает доступ на запись к таблицам потоков (lock_application_table)
- проходит по списку объектов ядра и вызывает деструкторы
- если этот поток - последний в своём процессе, уничтожает адресное пространство
- освобождает разные системные ресурсы, которые мог выделить этот поток и которых нет в списке объектов ядра (список горячих клавиш, список кнопок, определённых потоком)
- если поток отлаживается, посылает извещение отладчику
- освобождает память под kernel-mode стек и область сохранения FPU/SSE
- освобождает карту ввода/вывода (если она была изменена - есть стандартная карта ввода/вывода, которая создаётся при загрузке и разделяется между всеми потоками)
- если окно потока было на вершине оконного стека, активирует следующее окно
- если поток рухнул (или был прибит) в процессе работы с жёстким диском, освобождает мьютекс занятости жёсткого диска; то же самое для CD и дискеты
- освобождает выделенные потоком IRQ и порты
- если текущий прибиваемый процесс - отладчик, помечает как завершающиеся все отлаживаемые им процессы
- перерисовывает экран
- Освобождает доступ на запись к таблицам потоков (unlock_application_table)
destroy_thread
- TODO
protect_from_terminate
- TODO
unprotect_from_terminate
- TODO
request_terminate
- TODO
Файл sched.inc
- Планировщик задач
irq0
- обработчик прерывания интервального таймера (irq 0)
- Увеличивает текущее время (число сотых долей секунды, прошедших с загрузки системы, может быть получено в приложении функцией 26.9, много где используется внутри ядра)
- Вызывает процедуру обработки текущей ноты для писка, описанного в предыдущем абзаце;
- Каждую 100-ю итерацию (каждую секунду) обнуляет счётчик "тактов в предыдущую секунду" (поле в структуре потока) у всех потоков;
- Служит планировщиком, переключаясь на следующую задачу; алгоритм выбора описан в предыдущем посте, а при переключении увеличивается счётчик тактов у текущего потока (от которого управление уходит) и заполняются системные структуры - kernel-mode стек, карта разрешения ввода/вывода, page table (cr3), отладочные регистры drN (если нужно) и устанавливает бит TS в cr0. (Регистры CPU хранятся в системном стеке, так что popa после переключения стека автоматически восстановит регистры задачи, которая стала текущей.) Последнее действие нужно для "ленивой выгрузки" контекста FPU/MMX/SSE: если этот контекст переключать сразу, это займёт какое-то время, при том, что новая задача, возможно, вообще не использует ничего, кроме CPU; поэтому эти регистры остаются на своих местах, но устанавливается флаг TaskSwitch, в результате чего при следующем обращении к регистрам (именно обращении! когда нужно действительно переключать весь контекст) процессор возбудит исключение, обработчик которого молча сохранит регистры ушедшего потока, загрузит регистры нового потока и перезапустит инструкцию, сделав вид, что ничего не случилось.
change_task
- данная функция с помощью find_next_task находит следующий таск на котрый нужно переключиться.
- и переключается на него с помощью вызова do_change_task
update_counters
- TODO
updatecputimes
- Вычисляет TASKDATA.cpu_usage для всех тасков.
do_change_task
- функция переключения контекста на заданный таск.
- параметры передаются так:
- ebx = address of the APPDATA for incoming task (new): warning:
- [CURRENT_TASK] and [TASK_BASE] must be changed before (e.g. in find_next_task)
- [current_slot] is the outcoming (old), and set here to a new value (ebx)
scheduler_add_thread
- TODO
scheduler_remove_thread
- TODO
find_next_task
- Найти новый таск для передачи ему управления
- принимает аргументы:
- bl = SCHEDULE_ANY_PRIORITY:
- учитывать таски со всеми приоритетами
- bl = SCHEDULE_HIGHER_PRIORITY:
- учитывать только таски с приоритетом больше приоритета текущего таска
- продолжаем исполнять текущий таск, если не найдется готовых тасков с приоритетом меньшим чем у текущего
- возвращаемое значение:
- ebx = address of the APPDATA for the selected task (slot-base)
- edi = address of the TASKDATA for the selected task
- ZF = 1 if the task is the same
- Предупреждение:
- [CURRENT_TASK] = bh , [TASK_BASE] = edi -- as result
- [current_slot] is not set to new value (ebx)!!!
- scratched: eax,ecx
pick_task
- В ядре нигде не вызывается, непонятно зачем нужна.
shed
- TODO
enqueue
- TODO
Файл taskman.inc
fs_execute
- Создание процесса. принимает на вход имя бинарного файла для загрузки, параметры командной строки для нового процесса и флаги, сейчас только то, запускается процесс как отлаживаемый или как обычный. (edx = flags; ecx -> cmdline; ebx -> absolute file path; eax = string length )
- Загружает бинарник (целиком в память ядра; если он упакован kpack'ом, то распаковывается в памяти);
- Проверяет заголовок исполняемого файла, вычисляются нужные параметры (есть две версии заголовка, мало отличающиеся);
- Захватывает доступ на запись к таблицам потоков (lock_application_table)
- Находит пустой слот для нового потока; если такого нет (255 потоков уже запущены) - выход с ошибкой;
- Заполняет имя процесса;
- Создаёт новое адресное пространство (это отдельная история);
- Вызывает функцию set_app_params, заполняющую остальные поля структуры потока (подробнее - ниже);
- Освобождает доступ на запись к таблицам потоков (unlock_application_table)
test_app_header
- TODO
alloc_thread_slot
- TODO
create_process
- TODO
destroy_page_table
- TODO
destroy_process
- TODO
pid_to_slot
- Поиск номера слота таска по его PID.
- Принимает PID в eax, возращает номер слота в eax, или 0 если таска с таким PID не существует.
check_region
- TODO
read_process_memory
- TODO
write_process_memory
- TODO
new_sys_threads
- Создание нового потока. Принимает на вход entry point нового процесса и указатель на user-mode стек.
- Захватывает доступ на запись к таблицам потоков (lock_application_table)
- Находит пустой слот для нового потока; если такого нет - выход с ошибкой;
- Копирует имя процесса и информацию об адресном пространстве вызывающего потока в структуру для нового;
- Вызывает set_app_params
- Освобождает доступ на запись к таблицам потоков (unlock_application_table)
map_process_image
- TODO
common_app_entry
- TODO
set_app_params
- Выделяет в адресном пространстве ядра буфер под стек ядра и область для сохранения состояния FPU и SSE;
- Инициализирует разные параметры потока значениями по умолчанию;
- Копирует командную строку и путь к приложению в адресное пространство процесса по адресам, записанным в заголовке бинарника (или не копирует, если эти значения в заголовке нулевые, что означает, что программа в них не нуждается);
- Выделяет очередной идентификатор (каждый следующий TID равен предыдущему + 1);
- инициализирует user-mode контекст, значения eip и esp берутся из параметров вызова для sys_new_threads и из заголовка для fs_execute;
- Если новый процесс загружается как отлаживаемый, то помечает его состояние как замороженное, иначе - как работающее (начиная с этого места на новый поток возможны переключения задач).
get_stack_base
- TODO