Writing applications for KolibriOS: Difference between revisions

From KolibriOS wiki
Jump to navigation Jump to search
No edit summary
 
Line 147: Line 147:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


; The header
format binary as ""                    ; Binary file format without extenstion


use32                                  ; Tell compiler to use 32 bit instructions
use32                                  ; Tell compiler to use 32 bit instructions


org 0x0                                ; the base address of code, always 0x0
org 0x0                                ; the base address of code, always 0x0
; The header


db 'MENUET01'
db 'MENUET01'
Line 315: Line 317:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


; The header
format binary as ""               
 
use32
use32
org 0x0


org 0x0
; The Header


db 'MENUET01'
db 'MENUET01'
Line 484: Line 486:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


; The header
format binary as ""                   


use32
use32


org 0x0
org 0x0
; The Header


db 'MENUET01'
db 'MENUET01'
Line 635: Line 639:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


format binary as ""                 
use32
use32
org 0x0
org 0x0


Line 842: Line 846:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


format binary as ""                 
use32
use32
org 0x0
org 0x0



Latest revision as of 20:07, 18 March 2014

Structure of an application

KolibriOS's application structure is not specifically reserved for asm programming, the header can be produced with practically any other language. However, the overall application programming design is intended for easy 32 bit asm programming. The GUI is extremely easy to handle with especially asm language.

Programming for KolibriOS is easy as you first learn the basic structure of an application. At this point I assume you have some experience in assembly language.
The KolibriOS API (Application Programming Interface) is an easy-to-learn set of functions with practically no hierarchical accesses.

The operating of an application is based on events. The application is notified by the OS with the event type and the application acts accordingly.
There are three event types an application is expected to handle by default: window redraw, keypress and buttonpress.

Flow chart and structure of an application with default events:

;;;;;;;;;;;;;;;;;;;;;;;;;
;                       ;
;     HEADER DATA       ;
;                       ;
;;;;;;::;;;;;;;;;;;;;;;;;

START:
        call    draw_window

;;;;;;;;;;;;;;;;;;;;;;;;;
;                       ;
;   WAIT UNTIL EVENT    ;  <-----------------------------------------------I
;                       ;                                                  I
;;;;;;;;;;;;;;;;;;;;;;;;;                                                  I
;                                                                          I
;;;;;;;;;;;;;;;;;;;;;;;;;                                                  I
;                       ;     redraw   ->  call draw_window             -> I
;    READ EVENT TYPE    ; ->  key      ->  read keypress    -> process  -> I
;                       ;     button   ->  read buttonpress -> process  -> I
;;;;;;;;;;;;;;;;;;;;;;;;;

draw_window:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;                            ;
;  DRAW STATIC WINDOW PARTS  ;
;                            ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

        ret

;;;;;;;;;;;;;;;;;;;;;;;;
;                      ;
;     STATIC DATA      ;
;                      ;
;;;;;;;;;;;;;;;;;;;;;;;;

The header

db 'MENUET01'

Since KolibriOS still is more or less API compatible with MenuetOS, it has the same header. There is also an older version of the header which uses 'MENUET00', but it should not be used anymore.

dd 0x01 ; header version

Speaks for itself.

dd START ; start of execution

START is the label in your program where kernel will jump to after loading the program. You could use another name, but it's convenient to always use the same.

dd I_END ; size of image

This is the total size of the program code in bytes, its easy to use a label which you place at the end of the code.

dd 0x100000

This is the amount of ram that will be reserved for your app. You could use a static value as shown here, or you could use I_END + xx bytes. There, I_END would be the label to the end of code + all static declarations you made after the code. The xx bytes then are the number of bytes you want to use for the stack. Also note, this value can later be changed by using system functions.

dd 0x100000 ; stack position in memory area

Where the end of stack is (the value of esp at start of program). Logically, this would be the same as the previous value.

dd 0x0 ; Parameters

If you want to use parameters, this should be a pointer to a 1024 byte buffer, in which those parameters will be written by the kernel. If you don't want to use them, set this dword to 0.

dd 0x0 ; Path

Path value, works the same as parameter.

System calls

The System calls (API) are explained in various sources. There is the file syscalls.txt which you can find in KolibriOS itself, but also in the zip file of the distribution.< If you understand russian, you can also find system calls on this wiki.

To execute a system call, you first need to fill the registers with the correct value. Say we want to wait a couple of milliseconds, we need to use system function 5 and place the time we want to wait in ebx.

        mov     eax, 5
        mov     ebx, 10

Now, we need to execute the function, this can be done with int 0x40:

        int     0x40

But also with more modern instructions such as syscall, sysenter etc. It's convenient to use the mcall macro from macros.inc, then you can choose to use int 0x40 or another method, at compile time. This macro also accepts parameters, first is eax, second is ebx, ...
Code for the above would be:

        mcall   5, 10

Coding Style

It's advisable to use the coding style, as described here: Style

The API

You can find the latest API documentation in /kernel/docs/ in the SVN repository (WebSVN)
Inside KolibriOS, you can find sysfuncs.txt (english version) or sysfuncr (russian version) in DOCKPACK program.
These files also come with the so called distribution kit, in documents folder.

Assembly examples

Some examples are listed on this page, more can be found on the SVN server in the folder /programs/develop/examples/ (WebSVN)

Simple example

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;                                                  ;
;      EXAMPLE APPLICATION                         ;
;                                                  ;
;      Compile with FASM                           ;
;                                                  ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

format binary as ""                     ; Binary file format without extenstion

use32                                   ; Tell compiler to use 32 bit instructions

org 0x0                                 ; the base address of code, always 0x0

; The header

db 'MENUET01'
dd 0x01
dd START
dd I_END
dd 0x100000
dd 0x7fff0
dd 0, 0

; The code area

include 'macros.inc'

START:                                  ; start of execution
        call    draw_window             ; draw the window

; After the window is drawn, it's practical to have the main loop.
; Events are distributed from here.

event_wait:
        mov     eax, 10                 ; function 10 : wait until event
        mcall                           ; event type is returned in eax

        cmp     eax, 1                  ; Event redraw request ?
        je      red                     ; Expl.: there has been activity on screen and
                                        ; parts of the applications has to be redrawn.

        cmp     eax, 2                  ; Event key in buffer ?
        je      key                     ; Expl.: User has pressed a key while the
                                        ; app is at the top of the window stack.

        cmp     eax, 3                  ; Event button in buffer ?
        je      button                  ; Expl.: User has pressed one of the
                                        ; applications buttons.

        jmp     event_wait

;  The next section reads the event and processes data.

red:                                    ; Redraw event handler
        call    draw_window             ; We call the window_draw function and
        jmp     event_wait              ; jump back to event_wait

key:                                    ; Keypress event handler
        mov     eax, 2                  ; The key is returned in ah. The key must be
        mcall                           ; read and cleared from the system queue.
        jmp     event_wait              ; Just read the key, ignore it and jump to event_wait.

button:                                 ; Buttonpress event handler
        mov     eax,17                  ; The button number defined in window_draw
        mcall                           ; is returned to ah.
   
        cmp     ah,1                    ; button id=1 ?
        jne     noclose
        mov     eax,-1                  ; Function -1 : close this program
        mcall

noclose:
        jmp     event_wait              ; This is for ignored events, useful at development

;  *********************************************
;  ******  WINDOW DEFINITIONS AND DRAW  ********
;  *********************************************
;
;  The static window parts are drawn in this function. The window canvas can
;  be accessed later from any parts of this code (thread) for displaying
;  processes or recorded data, for example.
;
;  The static parts *must* be placed within the fn 12 , ebx = 1 and ebx = 2.

draw_window:
        mov     eax, 12                 ; function 12: tell os about windowdraw
        mov     ebx, 1                  ; 1, start of draw
        mcall

        mov     eax, 0                  ; function 0 : define and draw window
        mov     ebx, 100 * 65536 + 300  ; [x start] *65536 + [x size]
        mov     ecx, 100 * 65536 + 120  ; [y start] *65536 + [y size]
        mov     edx, 0x14ffffff         ; color of work area RRGGBB
                                        ; 0x02000000 = window type 4 (fixed size, skinned window)
        mov     esi, 0x808899ff         ; color of grab bar  RRGGBB
                                        ; 0x80000000 = color glide
        mov     edi, title
        mcall

        mov     ebx, 25 * 65536 + 35    ; draw info text with function 4
        mov     ecx, 0x224466
        mov     edx, text
        mov     esi, 40
        mov     eax, 4

  .newline:                             ; text from the DATA AREA
        mcall
        add     ebx, 10
        add     edx, 40
        cmp     byte[edx], 0
        jne     .newline

        mov     eax, 12                 ; function 12:tell os about windowdraw
        mov     ebx, 2                  ; 2, end of draw
        mcall

        ret

;  *********************************************
;  *************   DATA AREA   *****************
;  *********************************************
;
; Data can be freely mixed with code to any parts of the image.
; Only the header information is required at the beginning of the image.

text    db  "It look's like you have just compiled   "
        db  "your first program for KolibriOS.       "
        db  "                                        "
        db  "Congratulations!                        ", 0

title   db  "Example application", 0

I_END:

; The area after I_END is free for use as the application memory, 
; just avoid the stack.
;
; Application memory structure, according to the used header, 1 Mb.
;
; 0x00000   - Start of compiled image
; I_END     - End of compiled image           
;
;           + Free for use in the application
;
; 0x7ff00   - Start of stack area
; 0x7fff0   - End of stack area                 - defined in the header
;
;           + Free for use in the application
;
; 0xFFFFF   - End of freely useable memory      - defined in the header
;
; All of the the areas can be modified within the application with a
; direct reference.
; For example, mov [0x80000],byte 1 moves a byte above the stack area.

It should look like this (perhaps with other skin):

Example 1.png

Using uniform system colours

While previous example concentrated on creating a basic application, in this section more attention is paid on the outlook of the window.

You can use uniform desktop colors defined by a colour setup application.

New function in this example is get_system_colours.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;                                                  ;
;      UNIFORM SYSTEM COLOURS EXAMPLE              ;
;                                                  ;
;      Compile with FASM                           ;
;                                                  ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

format binary as ""                
use32
org 0x0

; The Header

db 'MENUET01'
dd 1, START, I_END, 0x100000, 0x7fff0, 0, 0

; The code area

window_size_X equ 300
window_size_Y equ 150

include 'macros.inc'

START:                          ; start of execution
        call    draw_window     ; draw the window

; After the window is drawn, it's practical to have the main loop.
; Events are distributed from here.

event_wait:
        mcall   10              ; function 10 : wait until event
                                ; event type is returned in eax

; How the 'dec' instruction in the following code works:
;
; example: If a window redraw is needed, eax will be 1
; So if we decrement eax, eax will become 0
; 'dec' instruction will set Zero-Flag because eax is now zero
; So now we can use jz (jump if zero flag is set) to detect this..
;
; If eax is 2, it will take 2 time 'dec  eax' before zero flag will be set..

        dec     eax             ; Event redraw request ?
        jz      red             ; Expl.: there has been activity on screen and
                                ; parts of the applications has to be redrawn.

        dec     eax             ; Event key in buffer ?
        jz      key             ; Expl.: User has pressed a key while the
                                ; app is at the top of the window stack.

        dec     eax             ; Event button in buffer ?
        jz      button          ; Expl.: User has pressed one of the
                                ; applications buttons.

        jmp     event_wait

;  The next section reads the event and processes data.

red:                            ; Redraw event handler
        call    draw_window     ; We call the window_draw function and
        jmp     event_wait      ; jump back to event_wait

key:                            ; Keypress event handler
        mcall   2               ; The key is returned in ah. The key must be read and cleared from the system queue.
        jmp     event_wait      ; Just read the key, ignore it and jump to event_wait.

button:                         ; Buttonpress event handler
        mcall   17              ; The button number defined in window_draw  is returned to ah.

        cmp     ah, 1           ; button id=1 ?
        jne     event_wait      ; if not, go back and wait for other events

        mcall   -1              ; Function -1 : close this program

get_system_colours:
        pusha

        mov     eax, 48                 ; fn 48 system colours
        mov     ebx, 3                  ; subfn 3 : get
        mov     ecx, app_colours        ; pointer to return area
        mov     edx, 10 * 4             ; number of bytes to return
        mcall

        popa

        ret

;*********************************************
;******  WINDOW DEFINITIONS AND DRAW  ********
;*********************************************
;
;  The static window parts are drawn in this function. The window canvas can
;  be accessed later from any parts of this code (thread) for displaying
;  processed or recorded data, for example.
;
;  The static parts *must* be placed within the fn 12 , ebx = 1 and ebx = 2.
;
;
;  When using system colours, the window colours are read from the
;  SYSTEM COLOURS TABLE

draw_window:
        mcall   12, 1                           ; Tell OS about start of redraw

        call    get_system_colours              ; fetches system colours from os

        mov     eax, 0                          ; function 0 : define and draw window

        mov     ebx, 100 * 65536 + window_size_X ; [x start] *65536 + [x size]
        mov     ecx, 100 * 65536 + window_size_Y ; [y start] *65536 + [y size]

        mov     edx, [w_work]                   ; color of work area 0xRRGGBB
        or      edx, 0x14000000                 ; 0x14000000 = window type 4, with title
        mov     esi, [w_grab]                   ; color of grab bar 0xRRGGBB
        or      esi, 0x80000000                 ; 0x80000000 = colour glide
        mov     edi, title
        mcall

        mov     ebx, 25 * 65536 + 35            ; draw info text with function 4
        mov     ecx, [w_work_text]
        mov     edx, text                       ; text from the DATA AREA
        mov     esi, 40

        mov     eax, 4

  .newline:
        mcall
        add     ebx, 10
        add     edx, 40
        cmp     byte [edx], 0
        jne     .newline

        mcall   12, 2 ; end of redraw

        ret

;  *********************************************
;  *************   DATA AREA   *****************
;  *********************************************
;
; Data can be freely mixed with code to any parts of the image.
; Only the header information is required at the beginning of the image.

text    db  'THIS PROGRAM USES UNIFORM SYSTEM COLOURS'
        db  'RETURNED TO A TABLE                     ', 0

title   db  'EXAMPLE APPLICATION', 0

I_END:

app_colours:                            ; SYSTEM COLOURS TABLE
  w_frames           dd ?               ; - frames
  w_grab             dd ?               ; - GRAB AREA
  w_grab_button      dd ?               ;   grab area button
  w_grab_button_text dd ?               ;   grab area button text
  w_grab_text        dd ?               ;   grab area text
  w_work             dd ?               ; - WORK AREA
  w_work_button      dd ?               ;   work area button
  w_work_button_text dd ?               ;   work area button text
  w_work_text        dd ?               ;   work area text
  w_work_graph       dd ?               ;   work area graphics

Freeform window

In this example we concentrate on shaping the window from rectangle to any form desired by the programmer. New function in this example is shape_window.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;                                                  ;
;      FREEFORM EXAMPLE APPLICATION                ;
;                                                  ;
;      Compile with FASM                           ;
;                                                  ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

format binary as ""                     

use32

org 0x0

; The Header

db 'MENUET01'
dd 1, START, I_END, 0x100000, 0x7fff0, 0x0, 0x0

include 'macros.inc'

START:                          ; start of execution
        call    shape_window    ; function for shaping
        call    draw_window     ; at first, draw the window

still:
        mcall   10              ; wait here for event

        dec     eax             ; redraw request ?
        jz      red

        dec     eax             ; key in buffer ?
        je      key

        dec     eax             ; button in buffer ?
        je      button

        jmp     still

red:                            ; redraw
        call    draw_window
        jmp     still
   
key:                            ; key
        mcall   2               ; just read it and ignore
        jmp     still
   
button:                         ; button
        mcall   17              ; get id
   
        cmp     ah, 1           ; button id=1 ?
        jne     noclose

        mcall   -1              ; close this program

noclose:
        jmp     still

shape_window:
        pusha

; give the shape reference area

        mcall   50, 0, shape_reference

; give the shape scale  32 x 32  ->  128 x 128
; you dont have to give this, scale is 1:1 by default   
; scale is set to 2^ecx

        mcall   50, 1, 2

        popa
        ret

shape_reference: ; 32 x 32, ( window_size_X + 1 ) * ( window_size_Y + 1 )
  db 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0
  db 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0
  db 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0
  db 0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0
  db 0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0
  db 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0
  db 0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0
  db 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0
  db 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0
  db 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0
  db 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0
  db 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0
  db 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0
  db 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0
  db 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0
  db 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0
  db 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0
  db 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0
  db 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0
  db 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0
  db 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0
  db 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0
  db 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0
  db 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0
  db 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0
  db 0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0
  db 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0
  db 0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0
  db 0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0
  db 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0
  db 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0
  db 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0

;*********************************************
;*******  WINDOW DEFINITIONS AND DRAW ********
;*********************************************

draw_window:
        mcall   12, 1                   ; notice OS about start of redraw

        mov     eax, 0                  ; function 0: define and draw window
        mov     ebx, 100 * 65536        ; [x start] * 65536 + [x size]
        mov     ecx, 100 * 65536        ; [y start] * 65536 + [y size]
        mov     bx , [x_size]
        mov     cx , [y_size]
        mov     edx, 0x00cccc00         ; color of work area RRGGBB,8->color glide
        mov     esi, 0x00cccc00         ; color of grab bar  RRGGBB,8->color glide
        mov     edi, 0x00cccc00         ; color of frames    RRGGBB
        mcall

        mov     eax, 8                  ; function 8: define and draw button
        mov     ebx, 78 * 65536 + 12    ; [x start] * 65536 + [x size]
        mov     ecx, 20 * 65536 + 12    ; [y start] * 65536 + [y size]
        mov     edx, 1                  ; button id
        mov     esi, 0x5599cc           ; button color RRGGBB
        mcall

        mcall   12, 2                   ; end of redraw

        ret

; DATA

x_size dw 127
y_size dw 127

I_END:

Threads

KolibriOS assembly threading has some great advantages over higher level languages. If you keep all the variables in registers, you can start as many threads as desired with the _same_ code, since no memory is affected and needs no saving. The registers are saved to Task Switch Segments by KolibriOS. All you have to do is to set a new stack.

Threads have no difference with the main process and use the same memory area as the process which starts it. They can have their own independent windows etc. In the closing of application, all threads have to be terminated with the default (eax = -1) system call.

New function in this example is create_thread.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;                                                      ;
;   THREAD EXAMPLE                                     ;
;                                                      ;
;   Compile with FASM for Menuet                       ;
;                                                      ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

format binary as ""                   
use32
org 0x0

db 'MENUET01' ; 8 byte id for application
dd 1, START, I_END, 0x100000, 0x80000, 0x0, 0x0

include 'macros.inc'   

START:                                    ; start of execution
        call    draw_window               ; at first, draw the window
   
event_wait:
        mov     eax, 10                   ; wait here for event
        mcall

        cmp     eax, 1                    ; redraw request ?
        je      red
        cmp     eax, 2                    ; key in buffer ?
        je      key
        cmp     eax, 3                    ; button in buffer ?
        je      button

        jmp     event_wait

red:                                      ; redraw
        call    draw_window
        jmp     event_wait

key:                                      ; key
        mov     eax, 2                    ; just read it and ignore
        mcall
        jmp     event_wait

button:                                   ; button
        mov     eax, 17                   ; get id
        mcall

        cmp     ah, 1                     ; button id=1 ?
        jne     noclose
        mov     eax, -1                   ; close this program (thread)
        mcall

noclose:
        cmp     ah, 2                     ; call create_thread
        jne     no_thread
        call    create_thread
        jmp     event_wait

no_thread:
        jmp     event_wait

; THREAD CREATION
;
; All we have to do is to give the thread entry address in ecx and
; a new stack position in edx with function eax=51, ebx=1

create_thread:
        cmp     [thread_stack], 0xf0000
        jge     no_new_thread
   
        add     [thread_stack], 0x1000
   
        mov     eax, 51                   ; thread_create system call
        mov     ebx, 1
        mov     ecx, START
        mov     edx, [thread_stack]
        mcall

no_new_thread:
        ret

thread_stack dd 0x80000

;*********************************************
;*******  WINDOW DEFINITIONS AND DRAW ********
;*********************************************

draw_window:
        mov     eax, 12                   ; function 12: tell os about windowdraw
        mov     ebx, 1                    ; 1, start of draw
        mcall

        mov     eax, 0                    ; function 0: define and draw window
        mov     ebx, 10 * 65536 + 300     ; [x start] * 65536 + [x size]
        mov     ecx, 10 * 65536 + 140     ; [y start] * 65536 + [y size]
        mov     esi, [thread_stack]
        sub     esi, 0x80000
        shr     esi, 11
        shl     esi, 16
        add     ebx, esi
        add     ecx, esi
        mov     edx, 0x02ffffff           ; color of work area RRGGBB,8->color glide
        mov     esi, 0x808899ff           ; color of grab bar  RRGGBB,8->color glide
        mov     edi, 0x008899ff           ; color of frames    RRGGBB
        mcall

        ; WINDOW LABEL
        mov     eax, 4                    ; function 4: write text to window
        mov     ebx, 8 * 65536 + 8        ; [x start] * 65536 + [y start]
        mov     ecx, 0x00ddeeff           ; color of text RRGGBB
        mov     edx, labelt               ; pointer to text beginning
        mov     esi, labellen-labelt      ; text length
        mcall

        ; CLOSE BUTTON
        mov     eax, 8                    ; function 8: define and draw button
        mov     ebx, (300 - 19) * 65536 + 12 ; [x start] * 65536 + [x size]
        mov     ecx, 5 * 65536 + 12       ; [y start] * 65536 + [y size]
        mov     edx, 1                    ; button id
        mov     esi, 0x6677cc             ; button color RRGGBB
        mcall

        ; NEW THREAD BUTTON
        mov     eax, 8
        mov     ebx, 25 * 65536 + 128
        mov     ecx, 88 * 65536 + 20
        mov     edx, 2
        mov     esi, 0x6677cc
        mcall

        mov     ebx, 25 * 65536 + 35      ; draw info text with function 4
        mov     ecx, 0x224466
        mov     edx, text
        mov     esi, 40

  .newline:
        mov     eax, 4
        mcall
        add     ebx, 10
        add     edx, 40
        cmp     byte[edx], 0
        jne     .newline

        mov     eax, 12                   ; function 12: tell os about windowdraw
        mov     ebx, 2                    ; 2, end of draw
        mcall

        ret

; DATA AREA

text:
    db 'THIS EXAMPLE CREATES THREADS BY RUNNING '
    db 'THE SAME CODE MULTIPLE TIMES. ALL WE    '
    db 'NEED IS A NEW STACK FOR EACH THREAD.    '
    db 'ALL THREADS SHARE THE SAME MEMORY.      '
    db '                                        '
    db '                                        '
    db '  CREATE NEW THREAD                     ', 0

labelt:
    db   'THREAD EXAMPLE'
labellen:

I_END:

Real-Time data

The following example focuses on Real-Time data fetching and processing. Application informs the OS for all the ports and datatypes to read at a specific IRQ.

Steps:

  1. reserve I/O port area
  2. reserve IRQ
  3. program IRQ
  4. program EVENT list for wanted IRQ
  5. runtime processing of the data
  6. back to default events - free IRQ from EVENT list
  7. free IRQ
  8. free port area
  9. terminate program

After IRQ's are programmed, the application has a new event for the main event loop, number (IRQ+16). When the application receives this event, the OS has recorded data ready for the application to process.

The table below shows the main structure of processing real time data. All the steps on the left of (A) are processed by the OS and the steps right from (A) are processed by the application.

IRQ           OWNER      =>  REC DATA  (A) SYS_EVENT => READ DATA => PROCESS
  
 0 TIMER       SYS
 1 KEYBOARD    SYS
 2             free      ->
 3 COM MOUSE   SYS/free  ?>
 4 COM MOUSE   SYS/free  ?>
 5 SOUND BL.   SYS
 6 FLOPPY      SYS
 7             free      ->
 8             free      ->
 9             free      ->
10             free      ->
11             free      ->
12 PS2 MOUSE   SYS/free  ?>
13 MATH PR.    SYS
14 IDE         SYS
15 IDE         SYS

An example of processing Real-Time data:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;                                                ;
;    REAL-TIME DATA                              ;
;                                                ;
;    Compile with FASM for Menuet                ;
;                                                ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

format binary as ""                   
use32
org 0x0

db 'MENUET01' ; 8 byte id for application
dd 1, START, I_END, 0x100000, 0x7fff0, 0x0, 0x0

include 'macros.inc'   

START:                                 ; start of execution
        call    draw_window            ; at first, draw the window
        call    program_real_time_data ; program the OS to receive real time data
        call    program_com_port       ; program the com port for specific device

event_wait:
        mov     eax, 10                ; wait here for event
        mcall

        cmp     eax, 1                 ; redraw request ?
        je      red
        cmp     eax, 2                 ; key in buffer ?
        je      key
        cmp     eax, 3                 ; button in buffer ?
        je      button

        cmp     eax, 16 + 4            ; RT: new event for wanted IRQ data (16+IRQ)
        je      read_rt

        jmp     event_wait

;  The next section reads the event and processes data.

read_rt:                               ; RT data
        mov     eax, 42                ; Function 42 returns recorded data for IRQ 4
        mov     ebx, 4                 ;
        mcall                          ; OS returns the recorded data.
                                       ; eax  number of bytes in buffer left
                                       ; bl   data
                                       ; ecx  0 = success, other = no data in buf.

        call    process_data
        jmp     event_wait

red:                                   ; redraw
        call    draw_window
        jmp     event_wait

key:                                   ; key
        mov     eax, 2                 ; just read it and ignore
        mcall
        jmp     event_wait

button:                                ; button
        mov     eax, 17                ; get id
        mcall

        cmp     ah, 1                  ; button id=1 ?
        jne     noclose
   
        call    free_real_time_data
   
        mov     eax, -1                ; close this program
        mcall

noclose:
        jmp     event_wait

program_real_time_data:
        ; Program the Real-Time data fetch
        ;
        ; 1) reserve I/O port area
        ; 2) reserve IRQ
        ; 3) program IRQ
        ; 4) program EVENT list for wanted IRQ

        pusha

        mov     eax, 46                ; reserve ports 0x3f0 - 0x3ff
        mov     ebx, 0
        mov     ecx, 0x3f0
        mov     edx, 0x3ff
        mcall

        mov     eax, 45                ; reserve irq 4
        mov     ebx, 0
        mov     ecx, 4
        mcall

        mov     eax, 44                ; set read ports for irq 4
        mov     ebx, irqtable
        mov     ecx, 4
        mcall

        mov     eax, 40                              ; get com 1 data with irq 4
        mov     ebx, 0000000000010000b shl 16 + 111b ; after this we have a new event (16+4)
        mcall

        popa
        ret

irqtable:
    dd  0x3f8+0x01000000 ; 3f8 =port to read  : 01 =read byte, 02 =read word

    dd  0x0              ; 0x0 = termintes read per IRQ event
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0
    dd  0x0

free_real_time_data:
        ; Free the used resources
        ;
        ; 1) get default events
        ; 2) free irq with function 45,1
        ; 3) free port area with function 46,1

        pusha

        mov     eax, 40                ; default events - disable irq 4 event
        mov     ebx, 111b
        mcall

        mov     eax, 45                ; free irq
        mov     ebx, 1
        mov     ecx, 4
        mcall

        mov     eax, 46                ; free ports 0x3f0-0x3ff
        mov     ebx, 1
        mov     ecx, 0x3f0
        mov     edx, 0x3ff
        mcall

        popa
        ret

; The following functions are for processing device specific data.

process_data:
        cmp     ebx, 80
        jne     .nocd

        mov     eax, 19
        mov     ebx, cdplayer
        mov     ecx, 0
        mcall

  .nocd:
        push    ebx
        mov     eax, [pos]
        add     eax, 1
        cmp     eax, 10 * 20 + 1
        jb      .noeaxz
        mov     esi, text + 10 * 4
        mov     edi, text
        mov     ecx, 10 * 21 * 4
        cld
        rep     movsb
        mov     eax, 13
        mov     ebx, 20 * 65536 + 260
        mov     ecx, 22 * 65536 + 220
        mov     edx, [wcolor]
        mcall
        mov     eax,10*19+1

  .noeaxz:
        mov     [pos],eax
        pop     ebx
        and     ebx,0xff

        call    draw_data

        ret

draw_data:
        pusha

        xchg    eax, ebx

        mov     ecx, 10
        shl     ebx, 2
        mov     esi, 3

  .newnum:
        xor     edx, edx
        div     ecx
        add     edx, 48
        mov     [ebx + text - 1], dl
        dec     ebx
        dec     esi
        jnz     .newnum

        call    draw_text

        popa

        ret

draw_text:
        pusha
   
        mov     ebx, 25 * 65536 + 35   ; draw info text with function 4
        mov     ecx, 0xffffff
        mov     edx, text
        mov     esi, 40
        mov     edi, 20

  .newline:
        mov     eax,4
        mcall
        add     ebx,10
        add     edx,40
        dec     edi
        jne     .newline

        popa

        ret

program_com_port:
        ; the following sequence programs COM port for infrared receiver

        mov     cx, 0x3f3 + 8
        mov     bl, 0x80
        mov     eax, 43
        mcall

        mov     cx, 0x3f1 + 8
        mov     bl, 0
        mov     eax, 43
        mcall

        mov     cx, 0x3f0 + 8
        mov     bl, 0x30 / 4
        mov     eax, 43
        mcall

        mov     cx, 0x3f3 + 8
        mov     bl, 3
        mov     eax, 43
        mcall

        mov     cx, 0x3f4 + 8
        mov     bl, 0xB
        mov     eax, 43
        mcall

        mov     cx, 0x3f1 + 8
        mov     bl, 1
        mov     eax, 43
        mcall

        mov     eax, 5
        mov     ebx, 100
        mcall
    
        mov     cx, 0x3f8
        mov     bl, 'I'
        mov     eax, 43
        mcall

        mov     eax, 5
        mov     ebx, 10
        mcall

        mov     cx, 0x3f8
        mov     bl, 'R'
        mov     eax, 43
        mcall

        ret

;*********************************************
;*******  WINDOW DEFINITIONS AND DRAW ********
;*********************************************

draw_window:
        mov     eax, 12                ; function 12:tell os about windowdraw
        mov     ebx, 1                 ; 1, start of draw
        mcall
   
        ; DRAW WINDOW
        mov     eax, 0                 ; function 0 : define and draw window
        mov     ebx, 100 * 65536 + 300 ; [x start] *65536 + [x size]
        mov     ecx, 100 * 65536 + 250 ; [y start] *65536 + [y size]
        mov     edx, [wcolor]          ; color of work area RRGGBB,8->color
        mov     esi, 0x8099bbff        ; color of grab bar  RRGGBB,8->color glide
        mov     edi, 0x00ffffff        ; color of frames    RRGGBB
        mcall
   
        ; WINDOW LABEL
        mov     eax, 4                 ; function 4 : write text to window
        mov     ebx, 8 * 65536 + 8     ; [x start] *65536 + [y start]
        mov     ecx, 0x00ffffff        ; color of text RRGGBB
        mov     edx, labelt            ; pointer to text beginning
        mov     esi, labellen - labelt ; text length
        mcall
   
        ; CLOSE BUTTON
        mov     eax, 8                 ; function 8 : define and draw button
        mov     ebx, (300 - 19) * 65536 + 12 ; [x start] *65536 + [x size]
        mov     ecx, 5 * 65536 + 12    ; [y start] *65536 + [y size]
        mov     edx, 1                 ; button id
        mov     esi, 0x5599cc          ; button color RRGGBB
        mcall
   
        call    draw_text
   
        mov     eax, 12
        mov     ebx, 2
        mcall
   
        ret

; DATA AREA

wcolor   dd  0x0
pos      dd  0x0

cdplayer db  'CDPLAY     '
labelt   db  'INFRARED RECEIVER FOR IRMAN IN COM 1'
labellen:

text:

I_END: